Thesis & Supervision Work
>
Doctoral Thesis

Estudio hidrotérmico de cubiertas ajardinadas. Análisis y recomendaciones de diseño para una mayor eficiencia energética

Date read: 2023-07-20 {_iPublic_txt_centro_}: | ID: 10251/195341

Author: Garcia Borràs, Júlia

Director: Lerma Elvira, Carlos ; Mas Tomas, Maria De Los Angeles

Abstract

[EN] Green roofs are part of the solutions, designs and construction systems of sustainable architecture. The balance between the environmental, social and economic dimensions in order to achieve the maximum well-being and development of our societies influences how to build. The energy renovation of an increasingly aged and deteriorated housing stock allows energy consumption to be reduced from two points of view: taking advantage of already existing resources, by extending the useful life of buildings that are still structurally functional, but in thermal, health or equipment poor conditions; and reducing the energy consumption of these buildings, with the benefits that this implies for the environment, the economy and the social well-being of its users and the surroundings. This thesis delves into the energy and thermal behaviour of green roofs under renovation, structured into two sections that address the study of energy consumption reduction and construction considerations for proper execution of these vegetated systems. The first section analyses the distribution of temperatures and relative humidity in the different layers of real-scale models of green roofs. The conclusions drawn from these data taken by data-loggers, for the city of València, are compared with the running of the same roof construction systems, designed and simulated through computer models. This process makes it possible to study not only the thermal behaviour of the roof, but also its energy performance and the possible savings to be achieved in different housing renovation scenarios, also considering the possible intervention on other elements of the thermal envelope. The evapotranspiration mechanism plays an important role in the heat dissipation of green roofs, so its study is deepened in the case of self-sustaining roofs, that is, without irrigation water supply. This green roof system aims to respond to the problematic water shortage that part of the Spanish territory is facing, especially on the Mediterranean coast where the city of València is located. It also deepens the understanding of which climatic variables, among outdoor temperature, solar radiation and precipitation, are most influential in this process. The relationship of evapotranspiration with stored water, in the roof layers arranged for this purpose, is evident, reducing this process to less water availability, especially in climates such as the Mediterranean, with low precipitation and high outdoor temperature and solar radiation. All the reflections obtained make it possible to confirm the limitations in heat losses due to evapotranspiration derived from water scarcity, which entails the need to look for possible solutions that improve their energetic behaviour. Each of the situations studied, known and raised their weaknesses and strengths, allows us to conclude which is the best green roof construction system for the case of renovation, the main contribution of this work. In the second and last section, the constructive study of a renovation is carried out using the previously chosen green roof system. This makes it possible to detect and learn about the problems and solutions to be faced in order to achieve correct execution, which will mean improving the accessibility, maintenance, sustainability and useful life of the green roof system. Understanding the energy behaviour of green roofs, as well as the particularities of installation and construction, allows to expand its diffusion, application and the environmental, social and economic benefits derived from its use. (Summary)

Keywords

Affordable and clean energyAhorro energéticoArquitectura sostenibleConstructive designCubiertas ajardinadasCubiertas verdesDiseño constructivoEnergy savingsEvapotranspiraciónEvapotranspirationHousing rehabilitationLandscaped roofRehabilitacion de viviendasSostenibilidadSustainabilitySustainable architecture

Quality index

Impact and social visibility

It is essential to present evidence supporting full alignment with institutional principles and guidelines on Open Science and the Conservation and Dissemination of Intellectual Heritage. A clear example of this is:

  • The work has been submitted to a journal whose editorial policy allows open Open Access publication.
  • Assignment of a Handle/URN as an identifier within the deposit in the Institutional Repository: http://hdl.handle.net/10251/195341
Continuing with the social impact of the work, it is important to emphasize that, due to its content, it can be assigned to the area of interest of ODS 7 - Ensure access to affordable, reliable, sustainable and modern energy for all, with a probability of 67% according to the mBERT algorithm developed by Aurora University.

{_iPublic_txt_info_premios_}