{rfName}
Pr

Licencia y uso

Icono OpenAccess

Citaciones

Altmetrics

Análisis de autorías institucional

Estellés, FAutor o CoautorRamón-Moragues, AAutor o CoautorCalvet-Sanz, SAutor o Coautor

Compartir

11 de octubre de 2024
Publicaciones
>
Artículo

Predicting Risk of Ammonia Exposure in Broiler Housing: Correlation with Incidence of Health Issues

Publicado en:Animals. 14 (4): 615- - 2024-02-01 14(4), DOI: 10.3390/ani14040615

Autores: Barbosa, Leonardo V S; Lima, Nilsa Duarte da Silva; Barros, Juliana de Souza Granja; de Moura, Daniella Jorge; Estelles, Fernando; Ramon-Moragues, Adrian; Calvet-Sanz, Salvador; Garcia, Arantxa Villagra

Afiliaciones

Univ Estadual Campinas, Coll Agr Engn, 501 Candido Rondon Ave - Autor o Coautor
Univ Fed Roraima, Dept Anim Sci - Autor o Coautor
Univ Politecn Valencia, Inst Anim Sci & Technol, Camino Vera Sn - Autor o Coautor
Valencian Inst Agr Res IVIA, Ctr Invest Tecnol Anim CITA - Autor o Coautor

Resumen

Simple Summary This study assesses the risk of ammonia exposure in broiler chicken production and correlates these risks with health issues, utilizing machine learning techniques. Two broiler breeds, fast-growing (Ross (R), 42 days) and slow growing (Hubbard (R), 63 days), were studied at different densities. Slow-growing birds had a fixed density of 32 kg/m2, while fast-growing ones were housed at low (16 kg/m2) and high (32 kg/m2) densities. The high concentration of atmospheric ammonia has been associated with a greater occurrence of bird health problems, such as pododermatitis, visual impairment and mucosal lesions compared to birds stocked in controlled environments with low concentrations of atmospheric ammonia. A total of 1250 birds were used, and classification algorithms (decision tree, SMO, Naive Bayes, and Multilayer Perceptron) were applied to predict ammonia risk levels. The analysis involved data selection, pre-processing, transformation, mining, and interpretation of results. The Multilayer Perceptron proved the most effective in predicting exposure risk. The Spearman's correlation coefficient indicated a strong correlation between high ammonia concentrations and higher incidences of injuries in the birds that were evaluated. This research highlights the importance of managing ammonia levels in broiler production to mitigate health risks for both fast- and slow-growing breeds.Abstract The study aimed to forecast ammonia exposure risk in broiler chicken production, correlating it with health injuries using machine learning. Two chicken breeds, fast-growing (Ross (R)) and slow-growing (Hubbard (R)), were compared at different densities. Slow-growing birds had a constant density of 32 kg m-2, while fast-growing birds had low (16 kg m-2) and high (32 kg m-2) densities. Initial feeding was uniform, but nutritional demands led to varied diets later. Environmental data underwent selection, pre-processing, transformation, mining, analysis, and interpretation. Classification algorithms (decision tree, SMO, Naive Bayes, and Multilayer Perceptron) were employed for predicting ammonia risk (10-14 pmm, Moderate risk). Cross-validation was used for model parameterization. The Spearman correlation coefficient assessed the link between predicted ammonia risk and health injuries, such as pododermatitis, vision/affected, and mucosal injuries. These injuries encompassed trachea, bronchi, lungs, eyes, paws, and other issues. The Multilayer Perceptron model emerged as the best predictor, exceeding 98% accuracy in forecasting injuries caused by ammonia. The correlation coefficient demonstrated a strong association between elevated ammonia risks and chicken injuries. Birds exposed to higher ammonia concentrations exhibited a more robust correlation. In conclusion, the study effectively used machine learning to predict ammonia exposure risk and correlated it with health injuries in broiler chickens. The Multilayer Perceptron model demonstrated superior accuracy in forecasting injuries related to ammonia (10-14 pmm, Moderate risk). The findings underscored the significant association between increased ammonia exposure risks and the incidence of health injuries in broiler chicken production, shedding light on the importance of managing ammonia levels for bird welfare.

Palabras clave

AmmoniaChicken productionEmissionsLitterMachine learning

Indicios de calidad

Impacto bibliométrico. Análisis de la aportación y canal de difusión

El trabajo ha sido publicado en la revista Animals debido a la progresión y el buen impacto que ha alcanzado en los últimos años, según la agencia WoS (JCR), se ha convertido en una referencia en su campo. En el año de publicación del trabajo, 2024 aún no existen indicios calculados, pero en 2023, se encontraba en la posición 10/80, consiguiendo con ello situarse como revista Q1 (Primer Cuartil), en la categoría Agriculture, Dairy & Animal Science.

Impacto y visibilidad social

Desde la dimensión de Influencia o adopción social, y tomando como base las métricas asociadas a las menciones e interacciones proporcionadas por agencias especializadas en el cálculo de las denominadas “Métricas Alternativas o Sociales”, podemos destacar a fecha 2025-07-03:

  • La utilización de esta aportación en marcadores, bifurcaciones de código, añadidos a listas de favoritos para una lectura recurrente, así como visualizaciones generales, indica que alguien está usando la publicación como base de su trabajo actual. Esto puede ser un indicador destacado de futuras citas más formales y académicas. Tal afirmación es avalada por el resultado del indicador “Capture” que arroja un total de: 31 (PlumX).

Con una intencionalidad más de divulgación y orientada a audiencias más generales podemos observar otras puntuaciones más globales como:

    Es fundamental presentar evidencias que respalden la plena alineación con los principios y directrices institucionales en torno a la Ciencia Abierta y la Conservación y Difusión del Patrimonio Intelectual. Un claro ejemplo de ello es:

    • El trabajo se ha enviado a una revista cuya política editorial permite la publicación en abierto Open Access.

    Análisis de liderazgo de los autores institucionales

    Este trabajo se ha realizado con colaboración internacional, concretamente con investigadores de: Brazil.