{rfName}
Ne

Licencia y uso

Icono OpenAccess

Altmetrics

Grant support

This work received funds from the Comunitat Valenciana under project EU-FEDER (ID-IFEDER/2018/025), Generalitat Valenciana under project ALMAMATER (PrometeoII/2014/030), and Ministerio de Ciencia e Investigacion/Agencia Estatal de Investigacion/10.13039/501100011033/and "FEDER Una manera de hacer Europa" under project MIRANDA-DocTIUM (RTI2018-095645-B-C22).

Análisis de autorías institucional

Navarro, AAutor (correspondencia)

Compartir

Publicaciones
>
Artículo

Neural Models for Measuring Confidence on Interactive Machine Translation Systems

Publicado en:Applied Sciences-Basel. 12 (3): 1100- - 2022-02-01 12(3), DOI: 10.3390/app12031100

Autores: Navarro, Angel; Casacuberta, Francisco

Afiliaciones

Univ Politecn Valencia, Res Ctr Pattern Recognit & Human Language Technol - Autor o Coautor

Resumen

Reducing the human effort performed with the use of interactive-predictive neural machine translation (IPNMT) systems is one of the main goals in this sub-field of machine translation (MT). Prior works have focused on changing the human-machine interaction method and simplifying the feedback performed. Applying confidence measures (CM) to an IPNMT system helps decrease the number of words that the user has to check through the translation session, reducing the human effort needed, although this supposes losing a few points in the quality of the translations. The effort reduction comes from decreasing the number of words that the translator has to review-it only has to check the ones with a score lower than the threshold set. In this paper, we studied the performance of four confidence measures based on the most used metrics on MT. We trained four recurrent neural network (RNN) models to approximate the scores from the metrics: Bleu, Meteor, Chr-f, and TER. In the experiments, we simulated the user interaction with the system to obtain and compare the quality of the translations generated with the effort reduction. We also compare the performance of the four models between them to see which of them obtains the best results. The results achieved showed a reduction of 48% with a Bleu score of 70 points-a significant effort reduction to translations almost perfect.

Palabras clave

Confidence measuresInteractive machine translationMachine translationNeural modelQuality estimation

Indicios de calidad

Impacto bibliométrico. Análisis de la aportación y canal de difusión

El trabajo ha sido publicado en la revista Applied Sciences-Basel debido a la progresión y el buen impacto que ha alcanzado en los últimos años, según la agencia WoS (JCR), se ha convertido en una referencia en su campo. En el año de publicación del trabajo, 2022, se encontraba en la posición 42/90, consiguiendo con ello situarse como revista Q2 (Segundo Cuartil), en la categoría Engineering, Multidisciplinary. Destacable, igualmente, el hecho de que la Revista está posicionada en el Cuartil Q2 para la agencia Scopus (SJR) en la categoría Engineering (Miscellaneous).

2025-06-21:

  • WoS: 2
  • Scopus: 4
  • OpenCitations: 1

Impacto y visibilidad social

Desde la dimensión de Influencia o adopción social, y tomando como base las métricas asociadas a las menciones e interacciones proporcionadas por agencias especializadas en el cálculo de las denominadas “Métricas Alternativas o Sociales”, podemos destacar a fecha 2025-06-21:

  • La utilización de esta aportación en marcadores, bifurcaciones de código, añadidos a listas de favoritos para una lectura recurrente, así como visualizaciones generales, indica que alguien está usando la publicación como base de su trabajo actual. Esto puede ser un indicador destacado de futuras citas más formales y académicas. Tal afirmación es avalada por el resultado del indicador “Capture” que arroja un total de: 7 (PlumX).

Es fundamental presentar evidencias que respalden la plena alineación con los principios y directrices institucionales en torno a la Ciencia Abierta y la Conservación y Difusión del Patrimonio Intelectual. Un claro ejemplo de ello es:

  • El trabajo se ha enviado a una revista cuya política editorial permite la publicación en abierto Open Access.
  • Asignación de un Handle/URN como identificador dentro del Depósito en el Repositorio Institucional: http://hdl.handle.net/10251/194175

Análisis de liderazgo de los autores institucionales

Existe un liderazgo significativo ya que algunos de los autores pertenecientes a la institución aparecen como primer o último firmante, se puede apreciar en el detalle: Primer Autor (Navarro Martínez, Ángel) y Último Autor (Casacuberta, F).

el autor responsable de establecer las labores de correspondencia ha sido Navarro Martínez, Ángel.