{rfName}
A

Indexat a

Llicència i ús

Citacions

41

Altmetrics

Grant support

This research was supported by the China Scholarship Council, (Grant number 201906220224), the ENSURE project (Grant number: 02WPL1449A-G) funded by the Federal Ministry of Education and Research (BMBF), the Sentinel4marine plastic waste project (Grant number: 50EE1269) and the EnMAP project (Grant number: 50EE1923) funded by the German Federal Ministry for Economic Affairs and Energy (BMWi). The WorldView-3 data used in this study were provided by the DigitalGlobe Foundation while the airborne HyMap recordings were conducted by the German Space Agency (DLR). The HySpex Mjolnir data recordings were conducted and geometrically corrected by Christian Mielke, Friederike Kastner, and Nicole Kollner of the GFZ. The simulation of Worldview-3 like spectra were produced by Karl Segl of the GFZ. Further, we like to thank Monika Goldel for fruitful discussions on chemical issues of the work. Finally, the authors like to thank the anonymous reviewers for their efforts and constructive comments to improve the quality of this article.

Anàlisi d'autories institucional

Zhou, ShanyuAutor (correspondència)

Compartir

29 d’gener de 2025
Publicacions
>
Article
No

A knowledge-based, validated classifier for the identification of aliphatic and aromatic plastics by WorldView-3 satellite data

Publicat a:Remote Sensing Of Environment. 264 112598- - 2021-07-15 264(), DOI: 10.1016/j.rse.2021.112598

Autors: Zhou, Shanyu; Kuester, Theres; Bochow, Mathias; Bohn, Niklas; Brell, Maximilian; Kaufmann, Hermann

Afiliacions

German Res Ctr Geosci GFZ, Remote Sensing & Geoinformat Sect, D-14473 Potsdam, Germany - Autor o coautor
Shandong Univ, Inst Space Sci, Nav & Remote Sensing Grp, 180 West Wenhua Rd, Weihai 264209, Peoples R China - Autor o coautor

Resum

Although the C-H chains of petroleum derivatives display unique absorption features in the short-wave infrared (SWIR), it is a challenge to identify plastics on terrestrial surfaces. The diverse reflectance spectra caused by chemically varying polymer types and their different kinds of brightness and transparencies, which are, moreover, influenced further by the respective surface backgrounds. This paper investigates the capability of WorldView-3 (WV-3) satellite data, characterized by a high spatial resolution and equipped with eight distinct and relatively narrow SWIR bands suitable for global monitoring of different types of plastic materials. To meet the objective, hyperspectral measurements and simulations were conducted in the laboratory and by aircraft campaigns, based on the JPL-ECOSTRESS, USGS, and inhouse hyperspectral libraries, all of which are convolved to the spectral response functions of the WV-3 system. Experiments further supported the analyses wherein different plastic materials were placed on different backgrounds, and scaled percentages of plastics per pixel were modeled to determine the minimum detectable fractions. To determine the detectability of plastics with various chemical and physical properties and different fractions against diverse backgrounds, a knowledge-based classifier was developed, the routines of which are based on diagnostic spectral features in the SWIR range. The classifier shows outstanding results on various background scenarios for lab experimental imagery as well as for airborne data and it is further able to mask non-plastic materials. Three clusters of plastic materials can clearly be identified, based on spectra and imagery: The first cluster identifies aliphatic compounds, comprising polyethylene (PE), polyvinylchloride (PVC), ethylene vinyl acetate copolymer (EVAC), polypropylene (PP), polyoxymethylene (POM), polymethyl methacrylate (PMMA), and polyamide (PA). The second and third clusters are diagnostic for aromatic hydrocarbons, including polyethylene terephthalate (PET), polystyrene (PS), polycarbonate (PC), and styrene-acrylonitrile (SAN), respectively separated from polybutylene adipate terephthalate (PBAT), acrylonitrile butadiene styrene (ABS), and polyurethane (PU). The robustness of the classifier is examined on the basis of simulated spectra derived from our HySimCaR model, which has been developed inhouse. The model simulates radiation transfer by using virtual 3D scenarios and ray tracing, hence, enables the analysis of the influence of various factors, such as material brightness, transparency, and fractional coverage as well as different background materials. We validated our results by laboratory and simulated datasets and by tests using airborne data recorded at four distinct sites with different surface characteristics. The results of the classifier were further compared to results produced by another signature-based method, the spectral angle mapper (SAM) and a commonly used technique, the maximum likelihood estimation (MLE). Finally, we applied and successfully tested the classifier on WV-3 imagery of sites known for a high abundance of plastics in Almeria (Spain), Cairo (Egypt), and Accra, (Ghana, West Africa). Both airborne and WV-3 data were atmospherically corrected and transferred to "at-surface reflectances". The results prove the combination of WV-3 data and the newly designed classifier to be an efficient and reliable approach to globally monitor and identify three clusters of plastic materials at various fractions on different backgrounds.

Paraules clau

Aliphatic and aromatic plasticsDebrisIndexKnowledge-based classifierMarine-environmentNiPlastic (waste) in the terrestrial environmentSpectraSpectral analysesSystemWasteWorldview-

Indicis de qualitat

Impacte bibliomètric. Anàlisi de la contribució i canal de difusió

El treball ha estat publicat a la revista Remote Sensing Of Environment a causa de la seva progressió i el bon impacte que ha aconseguit en els últims anys, segons l'agència WoS (JCR), s'ha convertit en una referència en el seu camp. A l'any de publicació del treball, 2021, es trobava a la posició 10/279, aconseguint així situar-se com a revista Q1 (Primer Cuartil), en la categoria Environmental Sciences. Destacable, igualment, el fet que la revista està posicionada per sobre del Percentil 90.

Independentment de l'impacte esperat determinat pel canal de difusió, és important destacar l'impacte real observat de la pròpia aportació.

Segons les diferents agències d'indexació, el nombre de citacions acumulades per aquesta publicació fins a la data 2025-09-09:

  • WoS: 20

Impacte i visibilitat social

Des de la dimensió d'influència o adopció social, i prenent com a base les mètriques associades a les mencions i interaccions proporcionades per agències especialitzades en el càlcul de les denominades "Mètriques Alternatives o Socials", podem destacar a data 2025-09-09:

  • L'ús, des de l'àmbit acadèmic evidenciat per l'indicador de l'agència Altmetric referit com a agregacions realitzades pel gestor bibliogràfic personal Mendeley, ens dona un total de: 48.
  • L'ús d'aquesta aportació en marcadors, bifurcacions de codi, afegits a llistes de favorits per a una lectura recurrent, així com visualitzacions generals, indica que algú està fent servir la publicació com a base del seu treball actual. Això pot ser un indicador destacat de futures cites més formals i acadèmiques. Aquesta afirmació està avalada pel resultat de l'indicador "Capture", que aporta un total de: 48 (PlumX).

Amb una intenció més de divulgació i orientada a audiències més generals, podem observar altres puntuacions més globals com:

  • El Puntuació total de Altmetric: 0.25.
  • El nombre de mencions a la xarxa social X (abans Twitter): 1 (Altmetric).

Anàlisi del lideratge dels autors institucionals

Aquest treball s'ha realitzat amb col·laboració internacional, concretament amb investigadors de: China; Germany.

Hi ha un lideratge significatiu, ja que alguns dels autors pertanyents a la institució apareixen com a primer o últim signant, es pot apreciar en el detall: Primer Autor (Zhou, Shanyu) .

l'autor responsable d'establir les tasques de correspondència ha estat Zhou, Shanyu.