{rfName}
A

Indexado en

Licencia y uso

Citaciones

41

Altmetrics

Grant support

This research was supported by the China Scholarship Council, (Grant number 201906220224), the ENSURE project (Grant number: 02WPL1449A-G) funded by the Federal Ministry of Education and Research (BMBF), the Sentinel4marine plastic waste project (Grant number: 50EE1269) and the EnMAP project (Grant number: 50EE1923) funded by the German Federal Ministry for Economic Affairs and Energy (BMWi). The WorldView-3 data used in this study were provided by the DigitalGlobe Foundation while the airborne HyMap recordings were conducted by the German Space Agency (DLR). The HySpex Mjolnir data recordings were conducted and geometrically corrected by Christian Mielke, Friederike Kastner, and Nicole Kollner of the GFZ. The simulation of Worldview-3 like spectra were produced by Karl Segl of the GFZ. Further, we like to thank Monika Goldel for fruitful discussions on chemical issues of the work. Finally, the authors like to thank the anonymous reviewers for their efforts and constructive comments to improve the quality of this article.

Análisis de autorías institucional

Zhou, ShanyuAutor (correspondencia)

Compartir

29 de enero de 2025
Publicaciones
>
Artículo
No

A knowledge-based, validated classifier for the identification of aliphatic and aromatic plastics by WorldView-3 satellite data

Publicado en:Remote Sensing Of Environment. 264 112598- - 2021-07-15 264(), DOI: 10.1016/j.rse.2021.112598

Autores: Zhou, Shanyu; Kuester, Theres; Bochow, Mathias; Bohn, Niklas; Brell, Maximilian; Kaufmann, Hermann

Afiliaciones

German Res Ctr Geosci GFZ, Remote Sensing & Geoinformat Sect, D-14473 Potsdam, Germany - Autor o Coautor
Shandong Univ, Inst Space Sci, Nav & Remote Sensing Grp, 180 West Wenhua Rd, Weihai 264209, Peoples R China - Autor o Coautor

Resumen

Although the C-H chains of petroleum derivatives display unique absorption features in the short-wave infrared (SWIR), it is a challenge to identify plastics on terrestrial surfaces. The diverse reflectance spectra caused by chemically varying polymer types and their different kinds of brightness and transparencies, which are, moreover, influenced further by the respective surface backgrounds. This paper investigates the capability of WorldView-3 (WV-3) satellite data, characterized by a high spatial resolution and equipped with eight distinct and relatively narrow SWIR bands suitable for global monitoring of different types of plastic materials. To meet the objective, hyperspectral measurements and simulations were conducted in the laboratory and by aircraft campaigns, based on the JPL-ECOSTRESS, USGS, and inhouse hyperspectral libraries, all of which are convolved to the spectral response functions of the WV-3 system. Experiments further supported the analyses wherein different plastic materials were placed on different backgrounds, and scaled percentages of plastics per pixel were modeled to determine the minimum detectable fractions. To determine the detectability of plastics with various chemical and physical properties and different fractions against diverse backgrounds, a knowledge-based classifier was developed, the routines of which are based on diagnostic spectral features in the SWIR range. The classifier shows outstanding results on various background scenarios for lab experimental imagery as well as for airborne data and it is further able to mask non-plastic materials. Three clusters of plastic materials can clearly be identified, based on spectra and imagery: The first cluster identifies aliphatic compounds, comprising polyethylene (PE), polyvinylchloride (PVC), ethylene vinyl acetate copolymer (EVAC), polypropylene (PP), polyoxymethylene (POM), polymethyl methacrylate (PMMA), and polyamide (PA). The second and third clusters are diagnostic for aromatic hydrocarbons, including polyethylene terephthalate (PET), polystyrene (PS), polycarbonate (PC), and styrene-acrylonitrile (SAN), respectively separated from polybutylene adipate terephthalate (PBAT), acrylonitrile butadiene styrene (ABS), and polyurethane (PU). The robustness of the classifier is examined on the basis of simulated spectra derived from our HySimCaR model, which has been developed inhouse. The model simulates radiation transfer by using virtual 3D scenarios and ray tracing, hence, enables the analysis of the influence of various factors, such as material brightness, transparency, and fractional coverage as well as different background materials. We validated our results by laboratory and simulated datasets and by tests using airborne data recorded at four distinct sites with different surface characteristics. The results of the classifier were further compared to results produced by another signature-based method, the spectral angle mapper (SAM) and a commonly used technique, the maximum likelihood estimation (MLE). Finally, we applied and successfully tested the classifier on WV-3 imagery of sites known for a high abundance of plastics in Almeria (Spain), Cairo (Egypt), and Accra, (Ghana, West Africa). Both airborne and WV-3 data were atmospherically corrected and transferred to "at-surface reflectances". The results prove the combination of WV-3 data and the newly designed classifier to be an efficient and reliable approach to globally monitor and identify three clusters of plastic materials at various fractions on different backgrounds.

Palabras clave

Aliphatic and aromatic plasticsDebrisIndexKnowledge-based classifierMarine-environmentNiPlastic (waste) in the terrestrial environmentSpectraSpectral analysesSystemWasteWorldview-

Indicios de calidad

Impacto bibliométrico. Análisis de la aportación y canal de difusión

El trabajo ha sido publicado en la revista Remote Sensing Of Environment debido a la progresión y el buen impacto que ha alcanzado en los últimos años, según la agencia WoS (JCR), se ha convertido en una referencia en su campo. En el año de publicación del trabajo, 2021, se encontraba en la posición 10/279, consiguiendo con ello situarse como revista Q1 (Primer Cuartil), en la categoría Environmental Sciences. Destacable, igualmente, el hecho de que la Revista está posicionada por encima del Percentil 90.

2025-09-09:

  • WoS: 20

Impacto y visibilidad social

Desde la dimensión de Influencia o adopción social, y tomando como base las métricas asociadas a las menciones e interacciones proporcionadas por agencias especializadas en el cálculo de las denominadas “Métricas Alternativas o Sociales”, podemos destacar a fecha 2025-09-09:

  • El uso, desde el ámbito académico evidenciado por el indicador de la agencia Altmetric referido como agregaciones realizadas por el gestor bibliográfico personal Mendeley, nos da un total de: 48.
  • La utilización de esta aportación en marcadores, bifurcaciones de código, añadidos a listas de favoritos para una lectura recurrente, así como visualizaciones generales, indica que alguien está usando la publicación como base de su trabajo actual. Esto puede ser un indicador destacado de futuras citas más formales y académicas. Tal afirmación es avalada por el resultado del indicador “Capture” que arroja un total de: 48 (PlumX).

Con una intencionalidad más de divulgación y orientada a audiencias más generales podemos observar otras puntuaciones más globales como:

  • El Score total de Altmetric: 0.25.
  • El número de menciones en la red social X (antes Twitter): 1 (Altmetric).

Análisis de liderazgo de los autores institucionales

Este trabajo se ha realizado con colaboración internacional, concretamente con investigadores de: China; Germany.

Existe un liderazgo significativo ya que algunos de los autores pertenecientes a la institución aparecen como primer o último firmante, se puede apreciar en el detalle: Primer Autor (Zhou, Shanyu) .

el autor responsable de establecer las labores de correspondencia ha sido Zhou, Shanyu.