{rfName}
AS

Indexed in

License and use

Icono OpenAccess

Citations

20

Altmetrics

Analysis of institutional authors

Fornés-Leal, AAuthorLacalle, IAuthorPalau, CeAuthor

Share

October 28, 2024
Publications
>
Article

ASSIST-IoT: A Modular Implementation of a Reference Architecture for the Next Generation Internet of Things

Publicated to:Electronics. 12 (4): 854- - 2023-02-01 12(4), DOI: 10.3390/electronics12040854

Authors: Szmeja, Pawel; Fornes-Leal, Alejandro; Lacalle, Ignacio; Palau, Carlos E; Ganzha, Maria; Pawlowski, Wieslaw; Paprzycki, Marcin; Schabbink, Johan

Affiliations

NEWAYS Elect, Sci Pk Eindhoven 5010 - Author
Polish Acad Sci, Syst Res Inst, Newelska 6 - Author
Univ Gdansk, Fac Math Phys & Informat - Author
Univ Politecn Valencia, Commun Dept - Author

Abstract

Next Generation Internet of Things (NGIoT) addresses the deployment of complex, novel IoT ecosystems. These ecosystems are related to different technologies and initiatives, such as 5G/6G, AI, cybersecurity, and data science. The interaction with these disciplines requires addressing complex challenges related with the implementation of flexible solutions that mix heterogeneous software and hardware, while providing high levels of customisability and manageability, creating the need for a blueprint reference architecture (RA) independent of particular existing vertical markets (e.g., energy, automotive, or smart cities). Different initiatives have partially dealt with the requirements of the architecture. However, the first complete, consolidated NGIoT RA, covering the hardware and software building blocks, and needed for the advent of NGIoT, has been designed in the ASSIST-IoT project. The ASSIST-IoT RA delivers a layered and modular design that divides the edge-cloud continuum into independent functions and cross-cutting capabilities. This contribution discusses practical aspects of implementation of the proposed architecture within the context of real-world applications. In particular, it is shown how use of cloud-native concepts (microservices and applications, containerisation, and orchestration) applied to the edge-cloud continuum IoT systems results in bringing the ASSIST-IoT concepts to reality. The description of how the design elements can be implemented in practice is presented in the context of an ecosystem, where independent software packages are deployed and run at the selected points in the hardware environment. Both implementation aspects and functionality of selected groups of virtual artefacts (micro-applications called enablers) are described, along with the hardware and software contexts in which they run.

Keywords

ContainerisationDataDistributedEdge computingEnablersIotModular softwareNgiotOrchestrationReference architectureSystemVirtualisation

Quality index

Bibliometric impact. Analysis of the contribution and dissemination channel

The work has been published in the journal Electronics due to its progression and the good impact it has achieved in recent years, according to the agency WoS (JCR), it has become a reference in its field. In the year of publication of the work, 2023, it was in position 157/353, thus managing to position itself as a Q2 (Segundo Cuartil), in the category Engineering, Electrical & Electronic. Notably, the journal is positioned en el Cuartil Q2 para la agencia Scopus (SJR) en la categoría Electrical and Electronic Engineering.

From a relative perspective, and based on the normalized impact indicator calculated from World Citations provided by WoS (ESI, Clarivate), it yields a value for the citation normalization relative to the expected citation rate of: 3.99. This indicates that, compared to works in the same discipline and in the same year of publication, it ranks as a work cited above average. (source consulted: ESI Nov 14, 2024)

This information is reinforced by other indicators of the same type, which, although dynamic over time and dependent on the set of average global citations at the time of their calculation, consistently position the work at some point among the top 50% most cited in its field:

  • Field Citation Ratio (FCR) from Dimensions: 17.44 (source consulted: Dimensions Jul 2025)

Specifically, and according to different indexing agencies, this work has accumulated citations as of 2025-07-26, the following number of citations:

  • WoS: 20

Impact and social visibility

From the perspective of influence or social adoption, and based on metrics associated with mentions and interactions provided by agencies specializing in calculating the so-called "Alternative or Social Metrics," we can highlight as of 2025-07-26:

  • The use, from an academic perspective evidenced by the Altmetric agency indicator referring to aggregations made by the personal bibliographic manager Mendeley, gives us a total of: 36.
  • The use of this contribution in bookmarks, code forks, additions to favorite lists for recurrent reading, as well as general views, indicates that someone is using the publication as a basis for their current work. This may be a notable indicator of future more formal and academic citations. This claim is supported by the result of the "Capture" indicator, which yields a total of: 29 (PlumX).

With a more dissemination-oriented intent and targeting more general audiences, we can observe other more global scores such as:

  • The Total Score from Altmetric: 4.05.
  • The number of mentions on the social network X (formerly Twitter): 5 (Altmetric).

It is essential to present evidence supporting full alignment with institutional principles and guidelines on Open Science and the Conservation and Dissemination of Intellectual Heritage. A clear example of this is:

  • The work has been submitted to a journal whose editorial policy allows open Open Access publication.

Leadership analysis of institutional authors

This work has been carried out with international collaboration, specifically with researchers from: Netherlands; Poland.