{rfName}
HP

Indexado en

Licencia y uso

Icono OpenAccess

Altmetrics

Análisis de autorías institucional

Medina, LAutor o CoautorFlich, JAutor o Coautor

Compartir

28 de octubre de 2024
Publicaciones
>
Artículo

HPC Platform for Railway Safety-Critical Functionalities Based on Artificial Intelligence

Publicado en:Applied Sciences-Basel. 13 (15): 9017- - 2023-08-01 13(15), DOI: 10.3390/app13159017

Autores: Labayen, M; Medina, L; Eizaguirre, F; Flich, J; Aginako, N

Afiliaciones

Ikerlan Technol Res Ctr, Embedded Syst Dept - Autor o Coautor
Univ Basque Country, Comp Sci & Artificial Intelligence Dept - Autor o Coautor
Univ Politecn Valencia, Comp Engn Dept - Autor o Coautor

Resumen

The automation of railroad operations is a rapidly growing industry. In 2023, a new European standard for the automated Grade of Automation (GoA) 2 over European Train Control System (ETCS) driving is anticipated. Meanwhile, railway stakeholders are already planning their research initiatives for driverless and unattended autonomous driving systems. As a result, the industry is particularly active in research regarding perception technologies based on Computer Vision (CV) and Artificial Intelligence (AI), with outstanding results at the application level. However, executing high-performance and safety-critical applications on embedded systems and in real-time is a challenge. There are not many commercially available solutions, since High-Performance Computing (HPC) platforms are typically seen as being beyond the business of safety-critical systems. This work proposes a novel safety-critical and high-performance computing platform for CV- and AI-enhanced technology execution used for automatic accurate stopping and safe passenger transfer railway functionalities. The resulting computing platform is compatible with the majority of widely-used AI inference methodologies, AI model architectures, and AI model formats thanks to its design, which enables process separation, redundant execution, and HW acceleration in a transparent manner. The proposed technology increases the portability of railway applications into embedded systems, isolates crucial operations, and effectively and securely maintains system resources.

Palabras clave

Ai hardware acceleratorAutonomous and driverless train operationComputer vision and artificial intelligenceHigh-performance computingSafety-critical

Indicios de calidad

Impacto bibliométrico. Análisis de la aportación y canal de difusión

El trabajo ha sido publicado en la revista Applied Sciences-Basel debido a la progresión y el buen impacto que ha alcanzado en los últimos años, según la agencia WoS (JCR), se ha convertido en una referencia en su campo. En el año de publicación del trabajo, 2023, se encontraba en la posición 44/181, consiguiendo con ello situarse como revista Q1 (Primer Cuartil), en la categoría Engineering, Multidisciplinary.

Desde una perspectiva relativa, y atendiendo al indicador del impacto normalizado calculado a partir del Field Citation Ratio (FCR) de la fuente Dimensions, arroja un valor de: 2.54, lo que indica que, de manera comparada con trabajos en la misma disciplina y en el mismo año de publicación, lo ubica como trabajo citado por encima de la media. (fuente consultada: Dimensions Jul 2025)

De manera concreta y atendiendo a las diferentes agencias de indexación, el trabajo ha acumulado, hasta la fecha 2025-07-25, el siguiente número de citas:

  • WoS: 2
  • Scopus: 2

Impacto y visibilidad social

Desde la dimensión de Influencia o adopción social, y tomando como base las métricas asociadas a las menciones e interacciones proporcionadas por agencias especializadas en el cálculo de las denominadas “Métricas Alternativas o Sociales”, podemos destacar a fecha 2025-07-25:

  • El uso, desde el ámbito académico evidenciado por el indicador de la agencia Altmetric referido como agregaciones realizadas por el gestor bibliográfico personal Mendeley, nos da un total de: 15.
  • La utilización de esta aportación en marcadores, bifurcaciones de código, añadidos a listas de favoritos para una lectura recurrente, así como visualizaciones generales, indica que alguien está usando la publicación como base de su trabajo actual. Esto puede ser un indicador destacado de futuras citas más formales y académicas. Tal afirmación es avalada por el resultado del indicador “Capture” que arroja un total de: 20 (PlumX).

Con una intencionalidad más de divulgación y orientada a audiencias más generales podemos observar otras puntuaciones más globales como:

  • El Score total de Altmetric: 1.

Es fundamental presentar evidencias que respalden la plena alineación con los principios y directrices institucionales en torno a la Ciencia Abierta y la Conservación y Difusión del Patrimonio Intelectual. Un claro ejemplo de ello es:

  • El trabajo se ha enviado a una revista cuya política editorial permite la publicación en abierto Open Access.